
Dr Louise Brown

Computer Engineering
and Mechatronics

MMME3085

Lecture 1
Programming Recap

The Famous “Hello World” Program (1)

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.
 http://helloworldcollection.de/

These lines instruct the compiler to ‘include’ the contents of
the files ‘stdio.h’ and ‘stdlib.h’

This is done by the compiler before the code is compiled

http://helloworldcollection.de/

The Famous “Hello World” Program (2)

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.

 http://helloworldcollection.de/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

All C code starts execution at the line

 int main()

(regardless of where it is in your code)

http://helloworldcollection.de/

The Famous “Hello World” Program (3)

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.

 http://helloworldcollection.de/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

Brackets {}
are used to
block lines
of code

http://helloworldcollection.de/

The Famous “Hello World” Program (4)

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.

 http://helloworldcollection.de/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

Comments are vital to good coding – they
allow information to be included within code

Between /* and */
or following //

http://helloworldcollection.de/

The Famous “Hello World” Program (5)

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.

 http://helloworldcollection.de/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

printf is a function within C that allows us to
write text to the display.

In C, the parameters for a function are
placed within brackets () , multiple
parameters are comma separated.

http://helloworldcollection.de/

The Famous “Hello World” Program (6)

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.

 http://helloworldcollection.de/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

Each statement in C is terminated with a
semicolon ;

http://helloworldcollection.de/

The Famous “Hello World” Program (7)

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.

 http://helloworldcollection.de/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

The last statement

 return 0;

Terminates the main() function – so ending
the program

http://helloworldcollection.de/

Output

Chapter 5

Displaying Variables (and text)

◦ The ‘general’ function in C we use do display output is

printf
◦ It is a function that can take one or more parameters

◦ This is somewhat ‘unusual’ in programming in C where functions generally expect a
fixed number of parameters.

◦ There must be at least one parameter – the text to display

printf("Hello world!");

Parameter: The text to be displayed
contained in double quotation marks

Function: printf, used to
output to the display

Formatting Characters

▪ There are some formatting options for things that we cannot ‘type’ into
code (e.g. a ‘new line’)

▪ The two most common are

▪ \n Insert a new line

▪ \t Insert a TAB character

▪ There are more – take a look on-line!

▪ https://www.ibm.com/docs/en/rdfi/9.6.0?topic=set-escape-sequences

https://www.ibm.com/docs/en/rdfi/9.6.0?topic=set-escape-sequences

Displaying the contents of variables

Variable place holders – replaced (at run-time) with the contents of a
variable

▪ %d Used to display an int (you can also use %i)

▪ %f Used to display a floating number

▪ %c Used to display a single character

▪ %s Used to display a string (of characters)

▪ %x Used to display in hexadecimal

▪ %#x Used to display in hexadecimal with 0x in front of number

An example of formatting and place holders

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int a,b,c,sum; /* Define variables */

a = 1; /* Assign values */

b = 2;

c = 3;

sum = a + b + c ; /* Calculate sum & Display */

printf ("\nThe sum of %d + %d + %d is %d \n", a, b, c, sum);

return 0; /* Return from prog */

}

LC5\printf_example.c

Tidying up output

We can ‘enhance’ the variable format string (%d, %f) to improve how we
display numbers

Things that can be specified are
▪ The number of characters to used to display a value
▪ Where whitespace will be added

▪ Before / after the text to be outputted

Note:
▪ For numbers if more characters are required than that ‘stated’ in the

formatting string, the value is over-ridden
▪ For strings the output is truncated

Tidying up output (2)

▪For integers we can specify the number of characters to use
(space will be used to pad)

▪ %6d Print as an integer with a width of at least 6 wide, whitespace added at
the ‘front’

▪ %-6d Print as an integer with a width of at least 6 wide, whitespace
added at the ‘end’

▪Reminder:
▪ If more characters are actually needed (e.g. we specify 4 but the

number to display is 123456 the format will be automatically
overridden)

Tidying up output (3)

For floats we can specify the number of characters to use in total for the number as
a whole (can be omitted) and the precision

▪ %4f Print as a floating point with a width of, at least, characters 4

 wide (precision not specified)

▪ %.4f Print as a floating point with a precision of four characters after

 the decimal point

▪ %3.2f Print as a floating point at least 3 wide and a precision of 2DP

C5\formatting_numbers.c

There are a few others

▪Some further examples

%e
64-bit floating-point number (double), printed in scientific notation using

a lowercase e to introduce the exponent.

%E
64-bit floating-point number (double), printed in scientific notation using

an uppercase E to introduce the exponent.

%x
Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the

digits 0–9 and lowercase a–f.

%X
Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the

digits 0–9 and uppercase A–F.

A quick on-line search for formatting options in C will give you a very long list of options!

Operators in C

Chapter 6

Operators (part 1)

▪ This is just the term we use to indicate that we plan to perform a
mathematical or logical operation.

▪C provides a range possible operations, listed below

▪Arithmetic Operators

▪Relational Operators

▪ Logical Operators

▪Bitwise Operators

▪Assignment Operators

▪Misc. Operator

Arithmetic Operators

▪ These are the basic one we use in everyday mathematics – every computing language provides
them (almost all using the same symbols)

▪ If we assume A & B have previously been defined and that A=10 and B=3

Operator Description Example

+ Addition A + B 13

- Subtraction A – B 7

* Multiply A * B = 21 21

/ Divide A / B
3.33 or 3

(dependant on variable types)

% Modulus – the remainder after a division A % B 1

++ Increment operator: adds 1 to the value A++ 11

-- Decrement operator: subtracts 1 from the value A-- 9

++A will increment A before it is used. A++ will use A with its current value and then increment (same

for --) C6\inc_dec_examples.c

Logical Operators

▪We use these to combine relationships into more complex cases
▪Assuming A = 1 and B =0

Operator Description Example Result

&& The is a Logical AND operator. If both the operands (values) are non-zero then the

condition equates as TRUE

(A && B) FALSE

|| The is a Logical OR operator. If either (or both) of the operands (values) are non-

zero then the condition equates as TRUE

(A || B) TRUE

! This is the Logical NOT operator : this reverses the logical state of a condition !(A == B) TRUE

Note: There are also ‘Bitwise’ logical operations which operate on the
individual bits – these are covered later

Relational Operators

▪ We use these to make comparisons between variables – the result is TRUE or FALSE

▪ If we assume A & B have previously been defined and that A=10 and B=3

Operator Description Example Result

== Checks if values are equal, if yes then TRUE else FALSE (A == B) FALSE

!= Checks if values are NOT equal, if yes then TRUE else FALSE (A != B) TRUE

> Checks if the left operand (value) is greater than the right (A > B) TRUE

< Checks if the left operand (value) is less than the right (A < B) FALSE

>= Checks if the left operand (value) is greater than or equal to the right (A >= B) TRUE

<= Checks if the left operand (value) is less than or equal to the right (A <= B) FALSE

Bitwise Operators

▪ Unlike the LOGICAL operators which considered the values as zero or non-zero, bitwise

operations act in the same way as you have been covering in digital electronics

▪ Assuming A = 60 decimal, 00111100 Binary and B = 13 00001101 Binary

A & B: A|B:

 0011 1100 0011 1100

 0000 1101 0000 1101

 0000 1100 0011 1101

Operato

r

Description Result

(binary

Resul

t

(dec)

& Performs a bitwise AND 0011 1100 & 0000 1101 0000 1100 12

| Performs a bitwise OR 0011 1100 | 0000 1101 0011 1101 61

Bitwise Operators(2)

Operato

r

Description Result

(binary)

Result

(Dec)

& Performs a bitwise AND 0011 1100 & 0000 1101 0000 1100 12

| Performs a bitwise OR 0011 1100 | 0000 1101 0011 1101 61

^ Exclusive OR (XOR) 0011 1100 ^ 0000 1101 0011 0001 49

~ Ones complement ‘flips’ bits ~0011 1100 1100 0011 -61

<< Left shift, moves bits left number of bits

specified by the number on the right

0011 1100 << 2 1111 0000 240

>> Left shift, moves bits right number of bits

specified by the number on the right

0011 1100 >> 2 0000 1111 15

Assuming A = 60 decimal, 00111100 Binary and B = 13 00001101

Binary

Assignment Operators

▪ These are, in some way, just ‘shorthand’ – you may like to use them but it is not
essential.

▪ There are many of these, below are some of the more ‘common’ ones (others you can
probably guess!)

Operator Description Example ‘Long

hand’

=
Assigns the result of the RHS to the

variable on the LHS
C = A + B C = A + B

+= Add and Assign combined. B += A B = B + A

-= Subtract and Assign combined. B -= A B = B - A

*= Multiply and Assign combined. B *= A B = B * A

/= Divide and Assign combined B /= A B = B / A

%= Divide and Assign combined B %= A B = B % A

Input: Reading in information

Chapter 7

Input and Output

▪ Most of the work we have done so far has resulted in values being displayed on the screen, where
we have needed values for things to work we have ‘hard coded’ these into our code

▪ In practice we will however need to ‘request’ information from the user of our programs

▪ We will need to check their input is ‘sensible’ – so often not the case!

▪ In C we have a few methods provided that allow us to have values inputted, like much in
programming it is up to us to decide which is the most suitable approach

▪ We will look at a few methods

▪ Reading in numerical values

▪ Reading strings (the programming term for ‘text’)

▪ Capturing a keypress (without the need for ‘return’ to be pressed)

Input: scanf – reading ‘real’ values (1)

▪ The command we will make use of to read input from the keyboard is scanf
(defined in stdio.h)

▪ You are most of the way there already as scanf, the function we use, takes very
much the same format as printf (the function we use to display variables on the
screen).

▪ First, a reminder…
▪ Assuming a variable ‘a’ had been defined as an integer

▪ To display it on the screen we would use

 printf ("\nThe value of a is %d", a);

Input: scanf – reading ‘real’ values (2)

▪To read a value entered at the keyboard into a we use

scanf ("%d", &a);

Scanf
The function for reading

from the keyboard into a variable

%d
Indicates to scanf that an integer

Is to be read

&a
Read into the variable a

You MUST put a & before the variable

Input: scanf – reading ‘real’ values (3)

▪We can read in multiple values (even of mixed types)

▪we just use the correct formatting

 scanf ("%d %f", &a, &b);

Scanf
The function for reading

from the keyboard into a variable

%d %f
Indicates to scanf that an integer

then a float is to be read

&a, &b
Read into the variables a & b

You MUST put a & before each variable

scanf: Some examples in code

We will look at how we use for scanf in practice

C7\scanf_examples.c

Input and Output (part 1)

Scanf is a ‘general’ function that allows us to read in values to any C variable
previous defined

It does however have a few limitations:

▪ The user must press ‘return’ to confirm input

▪ The function is ‘large’ (so may not fit into available program memory)

▪ It is not great for reading single characters (the ‘return’ causes problems)

There is an alternative method to capturing a keypress

▪ Also, as it is a very ‘low level’ function, it does not require much program
memory

Input: getchar() - capturing a keypress

The function is getchar, define in stdio.h as

 int getchar (void)

This is the simplest form of input

▪we simply ‘wait’ for a key to be pressed and store this in a suitable
variable

▪Although an int is returned, we can store the result in a char as the

value returned will always be in the range 0-255)

Let’s take a look at this in action C7\getchar_example.c

Input: getch() - capturing a keypress

getchar() does have a problem; it needs a ‘return’ which can cause
problems later

An alternative (non-standard, but works on a PC) is to use

 int getch (void)

To use this you need to add #include <conio.h> to your code

Let’s take a look at this in action

LC7\getch.c

Strings: A special case

▪ A string is an array (covered later) of individual characters that we treat as a single piece
of text

▪ To define a string we simply create an array of chars large enough to hold our ‘text’.

▪ We do this by adding [n] after the variable name,

▪ Where ‘n’ is the maximum number of characters for our string + 1 (to allow for the
end of string marker), e.g.

 char Surname[51]

▪ Provides a variable that can hold a string of up to 50 characters

▪ We can then read/write this using the formatting character %s

Strings: A practical approach (1)

The following shows how we can create a string, read into it and print out the contents

int main()
{

char MyName[50];
printf ("\nWhat is your name? ");
scanf ("%s",MyName);
printf ("\nHello %s", MyName);
return 0;

}

Note: We drop the & here as
scanf knows from the %s we
are reading into an array

LC7\scanf_string.c

Strings: A practical approach (2)

int main()
{

char MyName[50];
printf ("\nWhat is your name? ");
gets (MyName);
printf ("\nHello %s", MyName);
return 0;

}

Note: We drop the & here as
gets knows we are reading
into an array

scanf is ok for strings but has problems if we include a space (it stops

reading from that point.

A better function to use is gets()

LC7\gets_string.c

Strings: A better approach

Even better coding is to use a slightly more advanced approach which allows us to specify the

maximum numbers of characters that can be read (any beyond this are discarded).

int main()
{

char MyName[50];
printf ("\nWhat is your name? ");
fgets (MyName, 50, stdin);
printf ("\nHello %s", MyName);
return 0;

}

Limit the number of characters to read

stdin is the standard input (keyboard)
fgets is a function
to read from a file
device

LC7\fgets_string.c

Introduction

Lab 1 Programming
Assignment

Lab 1 Programming Assignment

Submission: 3pm, Thursday 26th October 2023

Files on Moodle:

• Project brief

• Mark scheme

• Flowchart templates

• Sensor and encoder skeleton codes

By the end to today’s lecture you should be able to complete the

encoder program.

Next week we will cover the material needed for the sensor program

(functions).

Program Flow in Code

Chapter 8

Decisions: if

In coding, there are times when we need to follow a different path
dependent on the current state of (say) a variable

We will know these possible routes from the design of our code (and
possibly, any associated flow charts)

From this knowledge we can define conditions which will be true/false

We when implement these conditions in code – leading to a ‘program
flow’

if

The ‘if’ Statement

if(expression)
statement_to_execute_if_true;

Note:
We can also have a block of code
in {} controlled by the if statement

• Condition to be tested is in parenthesis and is made up

using relational operators (and, if required, logical

operators)

• If non-zero (TRUE), the statement is executed

Decisions: if

Quick in-class exercise

Assuming x & y have been defined:

write if statements that equate non-zero (true) if

▪ x > y

▪ x <> 3 and y > 7

▪ x <= 7 and (x + y) > 15

▪ x = y or x = 7

Decisions: if (Solutions)

Solutions:

x > y if (x > y)

x <> 3 and y > 7 if ((x != 3) && (y > 7))

x <= 7 and (x + y) > 15

if ((x <= 7) && ((x + y) > 15))

x = y or x = 7 if ((x == y) || (x == 7)

Decisions: if - in practice

▪We will look at some examples using

▪ == Equal to (NB TWO EQUAL SIGNS)

▪ != Not equal to

▪ > Greater than

▪ < Less than

▪ >= Greater than or equal to

▪ <= Less than or equal to

LC8\if_examples.c

A WARNING !!!

Watch out when using ‘==‘ and ‘=‘ with if

if (a = 1)
statement;

Sets a equal to 1 (which returns true)

so the statement is executed

if (a == 1)
statement;

Executes the statement ONLY

if the value of a is 1

THIS IS A VERY COMMON MISTAKE TO MAKE !

C8\if_equals_example.c

Examples of if

▪Single Statement (already seen)

if (a == 5)
printf ("a is equal to 5");

For multiple statements lines, use {}

if (a > b)
{

temp = b;
b = a;
a = temp;

}

Note: You can (and may wish to) use {} even for single statements

Else - Used to expand capabilities of if to include the
‘not true’ case

If we need statements to be executed if the condition is not met, we add
an else e.g.

if (a == 5)
printf(“a is equal to 5\n");

else
printf(“a is not equal to 5\n");

Note:

We use {} if multiple lines of code are required to be controlled by if/else

Simple example (1)

if (x == 2)

{

printf ("The value of x was 2\n");

printf ("I will now do something\n");

}

else

printf ("Not 2, so I will do nothing ");

Note:

As the ‘else’ is only
controlling one line we can
omit the { }

You may however wish to
place even a single line of
code inside { }

else / if

if (a == 1)
printf ("A = 1\n");

else if (a == 2)
printf ("A = 2\n")

else
printf("A is neither 1 or 2\n");

We can ‘chain’ if, else if & else should it be necessary

Simple example (2)

if (x == 2)

{

printf ("\nThe value of x was 2");

printf ("\nI will now do something");

}

else if (x == 3)

{

printf ("\nThe value of x was 3");

printf ("\nI will now do something else");

}

else

printf ("Neither 2 or 3; I will do nothing"); C8\if_else_if_else.c

More complex if conditions

So far we have had ‘single’ expressions,

We use LOGICAL operators (chapter 6) to construct more complex conditions

or ||
and &&
not !

Combine these within if statements, e.g.

if ((age > 5) && (age < 16))
printf ("You should be in school ! \n");

C8\complex_if.c

Use of single variables in if conditions

You may see statements within an ‘if’ statement which use a single

variable, or a single variable combined with a ‘not’ operator:

if (index)
{
 printf(“index has a value – not 0 \n”;
}

if (!index)
{
 printf(“index is 0 \n”;
}

Test is true for any non-zero
value of index.

Test is true for only when index
is 0

if (index != 0)

Equivalent to:

if (index == 0)

switch – case construct

Equivalent to if, else if .. else

Makes for easier reading of code

Allows for different ‘cases’ to produce the same result

Use break once a to drop-out of case
▪ (causes control to pass to the statement following the innermost enclosing
while, do, for or switch)

switch vs if / else if / else

if, else if .. else switch

if (c == 'a')
{

printf("Hi");
}
else if (c == 'b')
{

printf("Bye");
}
else
{

printf("Err")
}

Note: {} are optional here as only one line of code of controlled by each condition

switch (c)
{

case 'a' : printf("Hi");
break;

case 'b' : printf("Bye");
break;

default : printf("Err");
break;

}

Multiple Cases within Switch

if, else if .. else switch

if (c == 'a' || c == 'A')
{

printf("Hi");
}
else if (c == 'b' || c == 'B')
{

printf("Bye");
}
else
{

printf("Err")
}

switch (c) /* Switching on c (a char) */
{

case 'a': /* Case 'a' or 'A' */
case 'A': printf("Hi");

break;

case 'b': /* Case 'b' or 'B' */
case 'B': printf("Bye");

break;

default : printf("Err"); /* Default action */
break;

} /* End of switch */

Applies to any integral type

int a; /* Define an int */
scanf ("%d",&a); /* Get value */
switch (a) /* Start of switch */
{

case 1: printf("Hi"); /* Case 1 */
break;

case 2: printf("Bye"); /* Case 2 */
break;

default :printf("Err"); /* Default */
break;

} /* End of switch */

C8\switch_1.c

A reminder for numbers (when characters!).

char c; /* Define a char */
c=getch(); /* Get value */
switch (c) /* Start of switch */
{

case '1': printf("Hi"); /* Case '1' */
break;

case '2': printf("Bye"); /* Case '2' */
break;

default : printf("Err"); /* Default */
break;

} /* End of switch */

C8\switch_2.c

A clever trick – omit the break (if you mean to!)

char c; /* Define a char */
c=getch(); /* Get value */
switch (c) /* Start of switch */
{

case '1': printf("Hi"); /* Case '1' */

case '2': printf("Bye"); /* Case '2' */
break;

default : printf("Err"); /* Default */
break;

} /* End of switch */

C8\switch_3.c

	Slide 1: Computer Engineering and Mechatronics MMME3085
	Slide 2: Lecture 1 Programming Recap
	Slide 3: The Famous “Hello World” Program (1)
	Slide 4: The Famous “Hello World” Program (2)
	Slide 5: The Famous “Hello World” Program (3)
	Slide 6: The Famous “Hello World” Program (4)
	Slide 7: The Famous “Hello World” Program (5)
	Slide 8: The Famous “Hello World” Program (6)
	Slide 9: The Famous “Hello World” Program (7)
	Slide 10: Chapter 5
	Slide 11: Displaying Variables (and text)
	Slide 12: Formatting Characters
	Slide 13: Displaying the contents of variables
	Slide 14: An example of formatting and place holders
	Slide 15: Tidying up output
	Slide 16: Tidying up output (2)
	Slide 17: Tidying up output (3)
	Slide 18: There are a few others
	Slide 19: Chapter 6
	Slide 20: Operators (part 1)
	Slide 21: Arithmetic Operators
	Slide 22: Logical Operators
	Slide 23: Relational Operators
	Slide 24: Bitwise Operators
	Slide 25: Bitwise Operators(2)
	Slide 26: Assignment Operators
	Slide 27: Chapter 7
	Slide 28: Input and Output
	Slide 29: Input: scanf – reading ‘real’ values (1)
	Slide 30: Input: scanf – reading ‘real’ values (2)
	Slide 31: Input: scanf – reading ‘real’ values (3)
	Slide 32: scanf: Some examples in code
	Slide 33: Input and Output (part 1)
	Slide 34: Input: getchar() - capturing a keypress
	Slide 35: Input: getch() - capturing a keypress
	Slide 36: Strings: A special case
	Slide 37: Strings: A practical approach (1)
	Slide 38: Strings: A practical approach (2)
	Slide 39: Strings: A better approach
	Slide 40: Lab 1 Programming Assignment
	Slide 41: Lab 1 Programming Assignment
	Slide 42: Chapter 8
	Slide 43: Decisions: if
	Slide 44: if
	Slide 45: Decisions: if
	Slide 46: Decisions: if (Solutions)
	Slide 47: Decisions: if - in practice
	Slide 48: A WARNING !!!
	Slide 49: Examples of if
	Slide 50: Else - Used to expand capabilities of if to include the ‘not true’ case
	Slide 51: Simple example (1)
	Slide 52: else / if
	Slide 53: Simple example (2)
	Slide 54: More complex if conditions
	Slide 55: Use of single variables in if conditions
	Slide 56: switch – case construct
	Slide 57: switch vs if / else if / else
	Slide 58: Multiple Cases within Switch
	Slide 59: Applies to any integral type
	Slide 60: A reminder for numbers (when characters!).
	Slide 61: A clever trick – omit the break (if you mean to!)

